A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining

نویسندگان

  • Keke Chen
  • Ling Liu
چکیده

The major challenge of data perturbation is to achieve the desired balance between the level of privacy guarantee and the level of data utility. Data privacy and data utility are commonly considered as a pair of conflicting requirements in privacy-preserving data mining systems and applications. Multiplicative perturbation algorithms aim at improving data privacy while maintaining the desired level of data utility by selectively preserving the mining task and model specific information during the data perturbation process. By preserving the task and model specific information, a set of “transformation-invariant data mining models” can be applied to the perturbed data directly, achieving the required model accuracy. Often a multiplicative perturbation algorithm may find multiple data transformations that preserve the required data utility. Thus the next major challenge is to find a good transformation that provides a satisfactory level of privacy guarantee. In this chapter, we review three representative multiplicative perturbation methods: rotation perturbation, projection perturbation, and geometric perturbation, and discuss the technical issues and research challenges. We first describe the mining task and model specific information for a class of data mining models, and the transformations that can (approximately) preserve the information. Then we discuss the design of appropriate privacy evaluation models for multiplicative perturbations, and give an overview of how we use the privacy evaluation model to measure the level of privacy guarantee in the context of different types of attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods

We focus primarily on the use of additive and matrix multiplicative data perturbation techniques in privacy preserving data mining (PPDM). We survey a recent body of research aimed at better understanding the vulnerabilities of these techniques. These researchers assumed the role of an attacker and developed methods for estimating the original data from the perturbed data and any available prio...

متن کامل

Approval Sheet

Title of Dissertation: Multiplicative Data Perturbation for Privacy Preserving Data Mining Kun Liu, Doctor of Philosophy, 2007 Dissertation directed by: Dr. Hillol Kargupta Associate Professor Department of Computer Science and Electrical Engineering Recent interest in the collection and monitoring of data using data mining technology for the purpose of security and business-related application...

متن کامل

Performance Analysis of Clustering in Privacy Preserving Data Mining

Privacy is becoming an increasingly important issue in many data mining applications. This has triggered the development of many privacy preserving data mining techniques. A frequently used disclosure protection method is data perturbation. When used for data mining, it is desirable that perturbation preserves statistical relationships between attributes, while providing adequate protection for...

متن کامل

A Survey of Cryptographic and Non-cryptographic Techniques for Privacy Preservation

Cryptography is to become familiar with the requirement of large, complex, information rich data sets for it’s privacy preservation. The privacy preserving data mining has been generated; to go through the concept of privacy in data mining is hard. Several algorithms and approaches are being generated theoretically, but practically it is hard. Privacy in data mining can be achieved through seve...

متن کامل

Privacy-Preserving Data Analysis on Graphs and Social Networks

While literature within the field of privacy-preserving data mining (PPDM) has been around for many years, attention has mostly been given to the perturbation and anonymization of tabular data; understanding the role of privacy over graphs and networks is still very much in its infancy. In this chapter, we survey a very recent body of research on privacy-preserving data analysis over graphs and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008